Synthesis of First-Row Transition Metal Catalysts for Alkene Hydroamination

THOMPSON RIVERS

Objective

To develop an efficient synthesis for a catalyst to be used in an hydroamination reaction utilizing imino-phosphine ligands and first-row transition metals.

utilizing a metal complex catalyst.

Background

- Nitrogen containing compounds, amines, represent a vital component to countless industries, with applications including simple dyes to cleaning products.¹
- Currently, there is a rising need for inexpensive and efficient synthetic methods for amines.
- The hydroamination reaction is a very attractive route due to its simplicity and proposed 100 % atom efficiency.^{1,2,3}
- Efforts have been focused towards developing catalysts that increase hydroamination efficiency.
- Many of these catalysts utilize precious metals that are heavy, non-abundant, expensive and hazardous to health.⁴
- This research focuses on developing economically and environmentally conscious catalysts with first-row transition metals.

References . Streiff, S.; Jérôme, F. Chem. Soc. Rev., 2021, 50, 1512-1521. 2. Pohlki, F.; Doye, S. Chem. Soc. Rev., 2003, 32, 104-114. 3. Müller, T.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795-3892.

- 4. Ludwig, J. R.; Schindler, C. S. Chem. 2017, 2, 313-316.
- 5. Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Thovhogi, N., Lalancette, R. A. J. Inorg. Biochem. 2013, 129, 112-

Method **Coordination of Ligand 2** Characterization

Emily Dagasso

Experimental and Methodology

Synthesis of Imino-Phosphine Ligands

The novel imino-phosphine ligands were synthesized through a Schiff base condensation of 2-diphenylphosphino benzaldehyde, 2-DPPB, and corresponding anilines, including 2,4,6triphenylanilne (Ligand 1) and 4-tritylaniline (Ligand 2), as shown in Tables. 1 and 2.

The synthesized Ligand 2 was then coordinated to zinc chloride and cobalt (II) chloride by refluxing in diethyl ether.

All NMR and IR characterizations were obtained on a Bruker Avance 500 MHz NMR spectrometer and Perkin Elmer FT-IR spectrometer respectively.

The imino-phosphine ligands were both characterized through ¹H, ¹³C and ³¹P NMR spectroscopy, as well as FT-IR spectroscopy.

Ligand 2 coordinated to zinc chloride was characterized through ¹H NMR spectroscopy.

Results and Discussion

¹H NMR Characterization of Ligands 1 and 2

¹H NMR characterizations of both imino-phosphine ligands proved to be successful as shown in Figures. 6 and 7.

• The imine protons are shown as doublets at 8.93 ppm and 9.16 ppm for Ligand 1 and Ligand 2 respectively. The doublet suggests that the imine proton is coupling to the phosphorus lone pair.⁵

By decoupling ³¹P in the ¹H NMR, we were able to prove that the imine proton is coupled to the phosphorus atom as the characteristic peaks reverted to singlets, as shown in the top left of Figures. 6 and 7.

Supervisor: Dr. Dipesh Prema | Co-Supervisor: Dr. Kingsley Donkor

of imino-phosphine ligands.					
CaCl ₂ (g)	Reflux Time (h)	Yield (g)	Percent Yield		
0.0738	2.5	0.09638	70.1 %		
0.3746	3.5	0.64549	97.0 %		
on of zing to Ligand 2					

on of zinc to Ligand 2.					
Reflux Time (h)	Yield (g)	Percent Yield			
1.5	0.06493	58.4 %			
1.5	N/A	N/A			
	c to Ligance Reflux Time (h) 1.5 1.5	Reflux Time (h)Yield (g)1.50.064931.5N/A			

- 4-tritylaniline.
- Structural characterizations via ¹H, ¹³C, ³¹P NMR and FT-IR spectroscopy of both iminophosphine ligands elucidated coupling patterns and confirmed imine formation.
- The synthesized 4-tritylaniline successfully coordinated to zinc chloride as demonstrated by ¹H NMR data, however further structural elucidation via x-ray crystallography is needed to confirm coordination to cobalt (II) chloride.

Future Work

hydroamination reactions.

¹³C Characterizations of Ligands 1 and 2

The ¹³C spectra of each ligand indicate a doublet for the imine carbon, as shown in Figures. 8 and 9. Similar to the doublet demonstrated by the imine protons in the ¹H NMR, the doublets for the imine carbon in the ¹³C spectra can be attributed to a through space coupling to the phosphorus lone pair.

¹P Characterizations

- As shown in Figure. 10, shifting patterns are demonstrated between 2-DPPB (starting material) and the newly synthesized Ligands 1 and 2.
- 2-DPPB, the starting material, was shown to be the furthest downfield due to the electronegative oxygen present.
- Interestingly, the phosphorus peak of Ligand 2 is further downfield than the phosphorus peak for Ligand 1.

FT-IR Characterizations of Ligands 1 and 2

Absorption frequencies at 1633.78 cm⁻¹ and 1615.24 cm⁻¹ for Ligand 1 and Ligand 2 respectively are characteristic of $v_{C=N}$ stretching vibration bands, confirming the synthesis of the imino-phosphine ligands.

¹H NMR of Coordinated Ligand 2

- Coordination of the Ligand 2 proved to be successful utilizing $ZnCl_2$, as shown in Figure. 11.
 - The singlet of the imine proton at 8.42 ppm demonstrate a strong coordination between the imine nitrogen and the phosphorus metal centre.
 - Compared to the uncoordinated ligand, the imine proton of the complexed ligand shifted up-field. This is seen to be characteristic of imine coordination and is a result of electron density from the newly introduced metal shifting towards the electronegative nitrogen.⁵

Conclusion

This research successfully developed an efficient synthetic method of two novel iminophosphine ligands with a 70.1 % yield using 2,4,6-triphenylaniline and 97.0 % yield using

Next steps should include coordinating other first-row transition metals to the iminophosphine ligands, such as iron and nickel, as well as assess the catalyst's abilities in